Effects of temperature and pressure on phase transitions in a ternary microemulsion system

نویسندگان

  • Michihiro Nagao
  • Hideki Seto
  • Takayoshi Takeda
  • Youhei Kawabata
چکیده

Temperature variation experiments of small angle neutron scattering ~SANS! and neutron spin echo ~NSE! were carried out in order to compare effects of temperature and pressure on a structural formation in a ternary microemulsion system composed of AOT ~Aerosol-OT; dioctyl sulfosuccinate sodium salt!, D2O, and n-decane. From SANS measurements, a phase transition from one-phase dense water-in-oil droplet to two-phase coexistence with a lamellar and a disordered structure was observed with increasing temperature, similar to the case of pressure variation. Another phase transition was observed at a higher temperature above the lamellar phase, although such a subsequent phase transition has not been observed at higher pressure. The characteristic features of structural phase transitions by temperature and by pressure were compared by introducing a reduced temperature and pressure. The dynamical property observed from the NSE measurement was different between the high-temperature phase and the high-pressure phase. These results indicate that the mechanism of the phase transition induced by temperature is different from that by pressure. © 2001 American Institute of Physics. @DOI: 10.1063/1.1415459#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physico-chemical evaluation of a biocompatible microemulsion system containing IPM/Tween80/Isobutanol

A biocompatible microemulsion system comprising of isopropyl myristate (IPM) as oil, tween 80 as a non-ionic surfactant and isobuthanol as co-surfactant was studied experimentally at 298.15 K. The pseudo-ternary phase diagram for the microemulsion system has been delineated at different surfactant to co-surfactant mass ratio of 1:1, 2.4:1 and 4:1. Some physico-chemical properties such as densit...

متن کامل

Shear-induced phase transitions in ternary polymer blends.

We present a study of flow-induced phase transitions in microemulsion phases of ternary polymer blends. The results match qualitatively with the recent experimental observations on such systems but differ from the behavior expected and observed in the analogous system of surfactants. We rationalize this contrast from a molecular viewpoint suggesting that the interplay between polymer chain conf...

متن کامل

On the mechanism of photoinduced phase transitions in ternary liquid crystal systems near thermal equilibrium.

According to their phase diagram, polyalkyl glycol ether dissolved in ternary solutions (water, alcane, and cyclohexane) lead to the formation of either liquid crystal phases or microemulsion phases. By photosensitization of the ternary system with laser dyes and choosing the adequate concentration and temperature conditions of these lyotropic systems, it is possible to photoinduce the phase tr...

متن کامل

Preparation and Evaluation of Aceclofenac Topical Microemulsion

A topical preparation containing aceclofenac was developed using an o/w microemulsion system. Isopropyl myristate was chosen as the oil phase as it showed a good solubilising capacity. Pseudo-ternary phase diagrams were used to obtain the concentration ranges of the oil, surfactant (Labrasol) and co-surfactant (plurol oleique) for microemulsion formation. Five different formulations were formul...

متن کامل

Temperature and pressure effects on the bending modulus of monolayers in a ternary microemulsion.

We performed small-angle neutron scattering and neutron spin echo experiments on a ternary microemulsion composed of ionic surfactant AOT, water, and decane. Thermal fluctuations of monolayers have been investigated as a function of temperature and pressure. The amphiphilic monolayers become more flexible with increasing temperature and more rigid with increasing pressure. These results are con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001